
All hash tables use atomic instructions as synchronization primitives. For Multi-Split, the first and second level
evenly split key space based on requested capacity, so in the worst case it can only hold 50% percent of the
keys. This is ongoing work.

Results

Multilevel Hashtable

DRAMHiT Hashtable

DRAMHiT++: Towards faster hashtables

Acknowledgements: This research is supported by NSF 2220410.

Introduction

Design Principles

Prefetch Engine

Example Machine
- Hash tables are ubiquitous and critical for modern data-intensive
 applications, e.g., key-value stores, databases, genomic and meta-genomic
 analysis, dynamic programming, model checking, graph processing, and
 matrix multiplication.
- Accesses to the hash table often dominate execution in these programs.
- Despite hash functions taking 2–20 cycles to compute, the fastest hash
 tables spend 150–300 cycles per lookup and insertion.
- The majority of time is spent waiting on memory.
- Today's hash tables are limited by the decade-old design choice of treating
 memory as a subsystem with a synchronous interface.

- Minimal number of cache misses: The cost of a miss below the L2 cache is
 prohibitive and should be avoided on the critical path.
- Minimal number of memory transactions: Additional memory accesses can
 sharply degrade performance if memory bandwidth is saturated. Memory
 transactions should be minimized through efficient conflict resolution policy,
 hash table organization, and data structure layout.
- No contention: On workloads with high skew the overhead of contention
 dominates all others. To achieve peak performance hash tables should
 minimize or avoid contention.

Level 0 Level 1

......

Bucket(cache-aligned)

If bucket is full

SIMD register storing key

KV

K K K

hash(k)

K0 0 0 0

Graph comparing the performance of different variations of hashtable with
respect to fill factor. All hashtables are run with 56 threads, constant
frequency 2.1GHz, O3 gcc optimization flag on cloudlab C6620 machine.

The diagram above shows 4 Memory Controllers (MC), each supporting 2 DIMM slots. The Last
Level Cache (LLC) configuration is as follows: 80 KiB L1 cache per core, 2 MiB L2 cache per
core, and a shared 53 MiB L3 cache for all cores.

Joshua Tlatelpa-Agustin, Jerry Zhang, Anton Burtsev

SIMD Compare

is a bucket that contains 4 kvs

is a 16 byte key-value pair

LLC

MC MC

MC

...

Cores

MC

2

2

2

2

...

...

KV

KV

KV

KV

KV

KV

KV KV

KVhash(k)

Prefetch Engine

Prefetch Engine

lin
e
a
r p

ro
b
in

g

lin
e
a
r p

ro
b
in

g

Cloudlab c6620
Arch: Emerald Rapids
Memory: 128GB
CPU: 2.1GHz
Threads: 56

The Prefetch engine is implemented as a ring buffer, where the
queue head advances when an item enters the queue, and the queue
tail advances when the item leaves the queue.

Queue head

Queue tail Queue size

Prefetch engine computes hash of the KV pair upon entering the queue,
and prefetches the corresponding cacheline in the hashtable.

marks cacheline boundary

DRAMHiT uses prefetch engine to prefetch workload and do operations in a
batch manner. After all items in the queue have been prefetched it uses
linear probing to resolve collisions.

We observe that on uniform distribution, DRAMHiT experiences 1.3
reprobes per find operation on average at 70% fill factor. Thus, Multilevel
hashtable intends to reduce the spill problem by adding an additional
level that contains buckets. Each bucket represents a cacheline with 4
key values. When a bucket is full, we will insert into the second level
where the implementation is identical as a regular DRAMHiT.

add new kv index back to queue if spill

Under this collision scheme, a given kv pair could potentially spill over a
cacheline, and in order to preserve principle of never accessing unprefetch
memory, DRAMHiT will add kv back to the prefetch engine with spill over
index.

On find operation, we uses SIMD hardware support on x86 to look
up multiple KVs. Because buckets are cache aligned, SIMD technique
is also more efficient than regular DRAMHiT.

void add_to_prefetch_queue(kv):
 idx = hash(key)
 prefetch(idx)
 prefech_queue[queue_head] = kv
 queue_head++
 if (queue_head >= queue_sz)
 queue_head = 0

Hashtable Prefetcher Probing Strategy SIMD for lookup memory cost

Folklore hardware linear No 1X

DRAMHiT software linear No 1X

DRAMHiT SIMD software linear Yes 1X

Multi-Split software linear Yes 1X

Multi-Double software linear Yes 2X

Configuration Bandwidth (GB/s) Cache lines (MOPS) Cycle budget

Theoretical 307.2 4800 25

Seq reads 242.3 3785 31

Random reads 234.3 3660 32

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90

M
il
li
o
n
 O

p
e
ra

ti
o
n
s

P
e
r

S
e
c
o
n
d
 (

M
O

P
S
)

Hashtable Fill %

DRAMHiT-Simd
Folklore

Multi-Split
DRAMHiT

Multi-Double

Uniform Lookups (16 Gib)

